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Relativistic focusing and ponderomotive channeling of intense laser beams

B. Hafizi,1 A. Ting,2 P. Sprangle,2 and R. F. Hubbard2
1Icarus Research, Inc., P.O. Box 30780, Bethesda, Maryland 20824-0780

2Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375-5346
~Received 10 March 2000!

The ponderomotive force associated with an intense laser beam expels electrons radially and can lead to
cavitation in plasma. Relativistic effects as well as ponderomotive expulsion of electrons modify the refractive
index. An envelope equation for the laser spot size is derived, using the source-dependent expansion method
with Laguerre-Gaussian eigenfunctions, and reduced to quadrature. The envelope equation is valid for arbitrary
laser intensity within the long pulse, quasistatic approximation and neglects instabilities. Solutions of the
envelope equation are discussed in terms of an effective potential for the laser spot size. An analytical
expression for the effective potential is given. For laser powers exceeding the critical power for relativistic
self-focusing the analysis indicates that a significant contraction of the spot size and a corresponding increase
in intensity is possible.

PACS number~s!: 52.40.Db, 52.40.Nk, 42.65.Jx, 42.65.Sf
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I. INTRODUCTION

Propagation of an intense laser beam in plasma has a
cations in x-ray lasers and laser-driven accelerators, am
others@1–3#. On average the quiver motion of electrons in
laser beam leads to their expulsion from regions of high
tensity. The expulsion is due to the ponderomotive force
sets up a space-charge~ambipolar! field that retards the elec
trons and eventually a quasi-steady-state may be establis
The effect of the quiver motion is to reduce the local plas
frequency and can lead to so-called relativistic focusing o
laser beam@4–7#. The expulsion can enhance the focusi
effect and is referred to as ponderomotive channe
@8–15#. When the laser beam is sufficiently intense compl
expulsion—i.e., cavitation—can occur. Experimental obs
vations of relativistic focusing and ponderomotive chann
ing have been reported in Refs.@16–21#.

Analysis of the relativistic effect has shown that focusi
occurs when the laser powerP exceeds a critical powerPc .
In Ref. @6# an envelope equation for the laser spot size w
derived with the relativistic effect included. An envelop
equation describes the variation of the spot size with pro
gation distance as a function of the ratioP/Pc . Numerous
other analytical and numerical studies of intense laser b
propagation in plasmas have revealed many fascinating
tails. In some applications the time scales of interest are s
that the ions can be assumed to be stationary. Making us
the relativistic cold electron fluid equations along with t
Maxwell equations, key physics issues related to beam
namics, including the effects of relativistic focusing and po
deromotive channeling, can be studied. For underde
plasma the equations can be greatly simplified, requiring
solution of a reduced, nonlinear wave equation in three sp
dimensions. An analysis of the wave equation in Ref.@8#
established the possibility of electron cavitation for su
ciently large P/Pc and, based on numerical solutions,
estimate for the threshold value was obtained. A highligh
the studies in Refs.@10# and @11# was the elucidation of the
detailed radial mode structure of the laser beam, from wh
an improved value for the threshold power was obtain
PRE 621063-651X/2000/62~3!/4120~6!/$15.00
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Following a transient period the propagation of a laser be
in plasma can settle to a stationary regime wherein the b
profile is invariant. This is referred to asmatchedbeam
propagation. In Ref.@9# special matched beam solutions
slab geometry were obtained and compared with results f
a particle simulation code. The studies in Ref.@12# show that
although the central portion of a finite-length laser pulse c
be guided, the leading edge of the pulse is subject to diffr
tive spreading. In Ref.@13# propagation of an intense lase
beam in plasma was analyzed in general terms by mak
use of two global invariants~constants of motion! associated
with the reduced nonlinear wave equation. Writing the en
lope equation for the laser beam in terms of these two inv
ants~and other quantities!, it is possible to derive a necessa
condition for focusing of the laser beam. Relativistic focu
ing and ponderomotive channeling are not, of course,
only processes taking place in plasma in the presence o
intense laser field. For example, the generation of plas
waves and Raman scattering can modify the propagation
namics significantly@12,15#. Moreover, on the longer time
scale, ion motion will affect cavitation and guiding@22#.

In this paper the propagation of an intense laser beam
plasma is analyzed. In the expression for the refractive in
the contributions due to relativistic effects and radial po
deromotive displacement of electrons are identified. Analy
of the wave equation leads to explicit formulas that can
numerically evaluated, allowing the effects of ponderom
tive channeling and relativistic focusing to be readily co
puted. Specifically, an envelope equation for the spot s
including relativistic focusingand ponderomotive expulsion
of electrons, is derived. Solutions of the envelope equa
are discussed in terms of an effective potential for the s
size. An analytical expression for the effective potential
obtained and discussed. Solutions of the envelope equa
are compared with previous results that neglected pond
motive channeling. The utility of the generalized envelo
equation is that it permits analytical determination of the s
size. In particular, for a givenP/Pc , the matched~i.e., equi-
librium! spot size may be readily calculated. For laser po
ers exceeding the critical power for relativistic self-focusi
4120 ©2000 The American Physical Society
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the analysis indicates a significant contraction of the s
size and a corresponding increase in intensity.

II. THREE-DIMENSIONAL NONLINEAR
REFRACTIVE INDEX

Propagation of a laser beam in a medium may be
scribed in terms of the refractive indexh. To derive an ex-
pression for the refractive index, including relativistic effec
and ponderomotive channeling, the relativistic cold flu
equations and the wave equation may be employed.
equations are simplified by effecting the change of variab
(z,t)→(j,t), wherej5z2ct, t5t, and then making the
quasistatic approximation that the fluid variables chan
little during transit through a laser pulse of durationtL
@23,24#. The field and fluid variablesQ are expanded asQf
1Qs , whereu]Qf /]ju;ukQf u for the rapidly varying~suffix
f ! parts andu]Qs /]ju;min@kpuQsu ,uQsu/(ctL)# for the slowly
varying~suffix s! parts. Here,k5v/c is the free-space wave
number along the propagation directionz, v is the laser fre-
quency, andkp5@4pueu2n0 /(mc2)#1/2 is the plasma wave
number evaluated with the unperturbed densityn0 . The re-
sulting equations are then expanded to first order in pow
of (krs)

21!1 andkp /k!1, wherer s is the laser spot size
The wave equation for the normalized vector potential c

be written as@3#

S ¹'
2 12ik

]

]zD âf5k2~12h2!âf , ~1!

where the refractive index for circularly polarized electr
magnetic waves in the long pulse limit (ckptL@1) is ex-
pressible as

h~r ,z!512
kp

2@11kp
22¹'

2 ~11uau2!1/2#

2k2~11uau2!1/2 . ~2!

Here, a5ueuA/(mc2), A is the vector potential,af
5(âf /2)exp(ikj)1c.c., âf5a(r ,z)(ex1 iey), ex and ex are
unit vectors along thex and y axes, respectively,a is the
slowly varying amplitude of the vector potential, and t
Coulomb gauge (divA50) has been employed. Strictl
speaking, the operator]/]z in Eq. ~1! should readc21]/]t.
However, for the purpose here it is more convenient to c
sider the evolution of the laser beam with distance and
error incurred in replacingct with the propagation distanc
is negligible.

The first term in Eq.~2! represents free-space propagati
and the two terms in the square brackets correspond to
plasma contribution. The ‘‘1’’ in the square brackets, mo
fied by the denominator, leads to self-focusing due to
relativistic variation of mass, while the term involving th
transverse Laplacian operator takes account of the decr
in electron density due to the ponderomotive force. This te
is responsible for ponderomotive channeling. The relat
density perturbation is given by

dn~r ,z!

n0
5kp

22¹'
2 ~11uau2!1/2, ~3!
t

-

he
s

e

rs

n

-
e

he
-
e

ase

e

provided the density is everywhere non-negative, i.e.,dn
1n0>0.

Interaction of an intense laser beam with plasma is u
ally accompanied by myriad instabilities@2,3,25–35# that
can affect the propagation of the pulse. Instabilities are
glected in the present analysis for simplicity; in particula
the generation of plasma waves due to, for example, Ra
forward scattering is ignored.

III. ENVELOPE EQUATION

The operator on the left-hand side of Eq.~1! is in the
standard paraxial form. To solve it, the source-dependent
pansion ~SDE! technique, with Laguerre-Gaussian bas
functions, is employed anda(r ,z) is expanded as@36,37#

a~r ,z!5 (
m50

`

am~z!Dm~r ,z!, ~4a!

where

Dm~r ,z!5LmF 2r 2

r s
2~z!Gexp$2@12 ia~z!#r 2/r s

2~z!%, ~4b!

Lm is the Laguerre polynomial of orderm anda is propor-
tional to the wave-front curvature. Observe thatr s anda are,
in general, functions of the propagation distancez. The virtue
of the SDE method is that the fundamental amplitudea0 is
dominant, i.e.,ua0u@uam.0u. Assuming this, the envelop
equation for the spot size is readily shown to be given
@37#

]2r s

]z2 2
4

k2r s
32

4

r s
G50, ~5a!

whereG is given by

G5 1
2 E

0

`

dx~12h2!~12x!exp~2x!, ~5b!

andx52r 2/r s
2. Writing ua0u5âr̂ /r s , whereâ and r̂ are the

vacuum amplitude and minimum spot size at focus, resp
tively, making use of the expression forh in Eq. ~2! and
performing the integral in Eq.~5b! ~Appendix!, the equation
for the laser beam envelope may be written as

d2X

dz2 1~ â2ZR!22
]V

]X
50, ~6a!

whereV is defined by

]V

]X
5216

P

Pc
X$12~11X22!1/222 ln 2

12 ln@11~11X22!1/2#%2
ln~11X22!

X
, ~6b!

the scaled spot size is defined by

X5
r s

âr̂
, ~6c!
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ZR5kr̂2/2 is the Rayleigh rangein vacuo, and P/Pc
5(kpâr̂ /4)2 is the ratio of the laser beam power to the cri
cal power for relativistic focusing. The expression forP/Pc
given here is based on the fundamental Gaussian repres
tion for the radial profile of the laser beam. More accur
numerical solutions of the wave equation lead to a sligh
larger value forP/Pc @8,11#.

Equation~6! may be used to analyze the combined effe
of relativistic focusing and ponderomotive channeling. Eq
tion ~6a! represents oscillations of a ‘‘particle,’’ represent
by X, in an effective potentialV(X,P/Pc) and can be inte-
grated once to obtain

1

2 S dX

dzD 2

1~ â2ZR!22V5const, ~7a!

where

V516
P

Pc
X2$~11X22!1/2211 ln 22 ln@11~11X22!1/2#%

2 1
2 li 2~2X22!, ~7b!

and li2 (x)5*x
0dt@ ln(12t)#/t is the dialogarithm function

@38#.
The threshold condition for bound solutions of a col

mated~i.e., parallel! incident laser beam with large spot siz
can be examined by expanding the effective potential foX
→`. In this limit Eq. ~6a! reduces to

d2X

dz2 1~ â2ZR!22S P/Pc21

X3 1
324P/Pc

6X5 D'0. ~8!

It is clear that focusing can take place providedP exceeds
Pc . Depending on the value ofP/Pc the effective potential
can have a single minimum, corresponding to a matc
~equilibrium! solution for the scaled spot sizeXm . It follows
from Eq. ~7! that P/PC determines the depth and location
the minimum of the effective potential, while the spat
scale length for focusing is set byâ2ZR . The analysis can be
generalized to the case of a long but finite laser pulse by
substitution â→â exp@2(j/ctL)

2# if the longitudinal pulse
profile is a Gaussian, for example.

IV. SOLUTIONS OF THE ENVELOPE EQUATION

The envelope equation, Eq.~6!, can be used to study th
spatial variation of the spot size of a laser beam propaga
in plasma. Equation~7! is the first integral of the envelop
equation and is useful for visualizing the possible solutio
since the evolution of the spot sizeX is akin to the motion of
a particle in an effective potentialV(X,P/Pc).

Figure 1 displays the effective potential as a function
scaled spot sizeX5r s /(âr̂ ) for P/Pc51.2. The curve la-
beled~a! in Fig. 1~a! takes into account relativistic focusin
only, while for the curve labeled~b! the contributions due to
relativistic focusing as well as ponderomotive channeling
included. Figure 1 is shown here for direct comparison w
the corresponding plots in Refs.@3# and @6#. In these refer-
ences, ponderomotive channeling was not considered in
effective potential, as in curve~a!. The analysis here and i
Refs. @3# and @6# derive an effective potential that has
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single minimum. However, it is apparent from Fig. 1 th
ponderomotive expulsion of electrons leads to a signific
reduction in the matched beam spot size. Additionally,
region around the minimum of the effective potential f
curve ~b! is observed to be narrower than that for curve~a!.
Figure 1 shows that in general a laser beam that is propa
ing in plasma withP/Pc51.2 will undergo envelope oscil
lations about a minimum ofV. Similar envelope oscillations
have been previously described, based on numerical s
tions of the wave equation@8–13# or by employing an effec-
tive potential in slab geometry@9#. A matched~equilibrium!
beam solution to Eq.~6a! or ~7a! refers to the value of the
spot size at the minimum ofV. The analytical form for the
effective potential in Eq.~7b! can be used to obtain th
matched beam solution for any value ofP/Pc .

Multiplying Eq. ~1! from the left by âf* and adding the
resulting expression to that obtained by left multiplying t
complex conjugate of Eq.~1! by âf , it follows that

E E dx dyâf* •âf5const,

independent ofz @8,11–13#. This expresses the invariance
power as the laser beam spot size evolves. For the fundam
tal Gaussian this conservation law reduces toua0ur s5âr̂
5const. Conservation of power implies that when a co
mated, large spot size laser beam is injected into a pla
significant contraction of the beam inevitably results in
correspondingly large rise in the intensity.

Making use of Eq.~3! the on-axis density perturbation ca
be written in terms ofP/Pc andX as follows:

dn~r 50!

n0
52

Pc

P

1

~2X2!2~11X22!1/2.

While the right-hand side of this expression is proportion
to Pc /P, it should be borne in mind thatX is a function of
P/Pc and hence this expression does not display the c
plete scaling of the density perturbation with laser power

FIG. 1. Plot of effective potentialV(X) versus scaled spot siz
X5r s /(âr̂ ). The ratio of laser power to critical power for relativ
istic focusingP/Pc51.2. For curve~a! the effective potential in-
cludes only the effects of relativistic focusing while for curve~b!
both relativistic focusing and ponderomotive channeling are
cluded.
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should be recalled that the only permissible solutions
those for whichdn/n0>21, and that the analysis her
breaks down when~complete! cavitation sets in. The mode
Eqs.~1! and~2! do not guaranteedn(r ,z)/n0>21 and thus
it is necessary to verify this requirement when solving E
~6! or ~7! @8–11,13,22#. All the results presented here satis
this requirement.

Figure 2 shows the effective potential as a function oX
for a slightly larger value ofP/Pc(51.4). This example is of
interest since forP/Pc'1.42 ~complete! cavitation is ob-
served. ForP/Pc51.4 the plasma is nearly cavitated at t
matched value for the scaled spot sizeXm'0.5543.

Figure 3 shows a surface plot of the effective potential
a function of bothX and P/Pc . This plot shows that as th
ratio P/Pc is increased the matched beam solutionXm de-
creases monotonically.

Figure 4 shows plots of the variation ofX as a function of
the normalized axial coordinatez̄5z/(â2ZR). These plots
can be obtained from either the numerical solution of E
~6a! or a single numerical integration in Eq.~7a!. In Fig.
4~a!, P/Pc51.2 and the initial conditions areX51.8,
dX/dz̄50 ~i.e., no initial velocity!. In this example the initial

FIG. 2. Plot of effective potentialV(X) versus scaled spot siz
X5r s /(âr̂ ). The ratio of laser power to critical power for relativ
istic focusingP/Pc51.4.
e

.

s

.

conditions are such that the ‘‘particle’’ is bound inside t
effective potential well. The scaled spot size pinches do
by nearly a factor of 3 and oscillates indefinitely about
equilibrium beam radius. Observe that the oscillations
not simple harmonic since the effective potential is not pa
bolic. For comparison, Fig. 4~b! shows the scaled spot size a
a function of scaled axial distance for the same initial co
ditions as in Fig. 4~a! but with the ponderomotive channelin
contribution to the effective potential arbitrarily deleted, i.
with Eq. ~6b! replaced by

]V

]X
5216

P

Pc
X$12~11X22!1/222 ln 2

12 ln@11~11X22!1/2#%2
1

X3 , ~9!

cf. Refs.@3# and @6#. With only relativistic focusing active,
Fig. 4~b! shows that the beam envelope first expands
then performs oscillations with a longer period of oscillati
than observed in Fig. 4~a!. The oscillation amplitude is smal
and corresponds to a nearly matched initial condition.

Finally, Fig. 5 shows the variation ofX as a function ofz̄
for P/Pc51.01 and the initial conditionsX51, dX/dz̄5
20.1 ~i.e., an inward initial velocity!. In this example the
particle is not bound to the relatively weak potential we
Thus, after pinching in, the spot size turns around and
pands indefinitely.

V. CONCLUSIONS

A powerful laser beam focused on plasma can be sta
guided by a combination of relativistic focusing and po
deromotive channeling over extended distances. An enve
equation for the laser spot size has been obtained that ca
used to describe the axial evolution of the spot size a
function of the ratio of laser powerP to the critical power for
relativistic focusingPc . Depending on the initial beam spo
size and divergence, the envelope~i.e., radius! of a laser
beam that is incident on a plasma will oscillate with prop
r
FIG. 3. Surface plot of effective potentialV(X,P/Pc) versus scaled spot sizeX5r s /(âr̂ ) and the ratio of laser power to critical powe
for relativistic focusingP/Pc .
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gation distance providedP/Pc.1. Oscillations of the spo
size or beam spreading can be described in terms of an
fective potential that is given by an analytical function a
includes the effects of both relativistic focusing and ponde
motive channeling. It is shown that ponderomotive chann
ing can lead to significant enhancement of the focusing
fect.
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APPENDIX

In this appendix an outline of the evaluation of the in
gral in Eq.~5b! is given. First the expression forh in Eq. ~2!

FIG. 4. Variation of scaled spot sizeX5r s /(âr̂ ) with scaled
axial coordinatez̄5z/(â2ZR) for P/Pc51.2. The initial conditions
areX51.8 anddX/dz̄50, i.e., no initial velocity. In~a! both rela-
tivistic focusing and ponderomotive channeling are included, ba
on Eqs.~6a! and ~6b!. In ~b! only relativistic focusing is included
based on Eqs.~6a! and ~9!.
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is squared and inserted into Eq.~5b!. The integral of the term
proportional tokp

2 leads to the relativistic contributions, pro
portional to P/Pc in the effective potential, and has bee
considered in Refs.@3# and@6#. To integrate the term involv-
ing the Laplacian, which is due to the ponderomotive for
the change of variablesx52r 2/r s

2 is effected, leading to

Gpond5
2ua0u2

k2r s
2 E

0

`

dx
exp~22x!

11ua0u2 exp~2x!
, ~A1!

where the suffix ‘‘pond’’ indicates that only the contributio
due to the ponderomotive term is included. By differentiati
it can be shown that

Ex

dx8
exp~22x8!

11ua0u2 exp~2x8!
52

exp~2x!

ua0u2

1
ln@11ua0u2 exp~2x!#

ua0u4 ,

~A2!

whence Eq.~A1! reduces to

Gpond5
1

k2r s
2ua0u2

@ ln~11ua0u2!2ua0u2#. ~A3!

Rewriting Eq.~A3! in terms of the scaled spot sizeX leads to
the result in Eq.~6b!. Interestingly, the second term in Eq
~A3! exactly cancels the 1/X3 term in the expression fo
]V/]X in Refs.@3# and @6#.

d

FIG. 5. Variation of scaled spot sizeX5r s /(âr̂ ) with scaled
axial coordinatez̄5z/(â2ZR). In this example,P/Pc51.01, X51
and the initial velocity is inward, i.e.,dX/dz̄520.1.
A
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